
CSE 413
Programming Languages &
Implementation

Hal Perkins
Autumn 2012

Late binding and dynamic dispatch
(Based on CSE 341 slides by Dan Grossman)

1

Today

•  Dynamic dispatch, aka late binding, aka virtual method
calls
–  Call to self.m2() in method m1 defined in class C

can resolve to method m2 defined in a subclass of C
–  Most unique characteristic of OOP

•  Define semantics of objects and method lookup
carefully

•  Look at advantages and disadvantages of dynamic
dispatch

•  What if you want dynamic dispatch in a language that
doesn’t have it built-in?

2

Resolving identifiers

•  The rules for “looking up” symbols in a programming
language is a key part of the language’s definition
–  Talk about this in general first, then dynamic dispatch

•  Racket: Look up variables in the appropriate environment
–  Key point of closure’s lexical scope is defining

“appropriate”
–  Also includes let, let*, letrec

•  Ruby: local variables and blocks mostly like Racket
–  But also have instance variables, class variables, and

methods
–  Java is similar, but no explicit closures

3

Ruby instance variables and methods

•  self maps to some “current object”
•  Look up variables in environment of method
•  Look up instance variables using object bound to self
•  Look up class variables using object bound to
self.class

Syntactic distinction between local/instance/class names
(x, @x, @@x) means no ambiguity or shadowing rules

–  Contrast to Java where locals shadow fields with
same name unless we use this.f

4

Method names are different

•  self, locals, instance variables, class variables all map to
objects

•  We said “everything is an object” in Ruby but that’s not quite
true
–  Method names
–  Blocks
–  Argument lists

•  First-class values are things you can store, pass, return, etc.
–  In Ruby, only objects (almost everything) are first-class
–  Example: cannot do e.(if b then m1 else m2 end)

•  Have to do if b then e.m1 else e.m2 end
–  Example: can do (if b then x else y).m1

5

Ruby message lookup
Semantics for method calls aka message sends

e0.m(e1, …, en)
1.  Evaluate e0,e1,…,en to objects obj0,obj1,…,objn

–  Usual rules involving self, variable lookup, etc.
2.  Let C = class of obj0 (every object has a class)
3.  If m is defined in C , pick that method, else recur with the

superclass of C unless C is already Object
–  If no m is found, call method_missing instead

•  Default definition raises an error
–  Mixins complicate this step – more in a moment

4.  Evaluate body of method picked in step 3:
–  With parameters bound to arguments obj1,…,objn
–  With self bound to obj0 – this implements dynamic

dispatch!!

6

Java message lookup (very similar)
Semantics for method calls aka message sends

e0.m(e1, …, en)
1.  Evaluate e0,e1,…,en to objects obj0,obj1,…,objn

–  Usual rules involving this, variable lookup, etc.
2.  Let C = class of obj0 (every object has a class)
3.  Complicated rules to pick “the best m” using static types

of e0,e1,…,en
–  Static checking ensures suitable m (in fact the best m)

will always be found
–  Rules similar to Ruby except for this static overloading
–  No mixins to worry about (& interfaces irrelevant here)

4.  Evaluate body of method picked in step 3:
–  With parameters bound to arguments obj1,…,objn
–  With this bound to obj0 – this implements dynamic

dispatch!!
7

Ruby mixins

Mixins change the lookup rules slightly

•  When looking for receiver obj0’s method m, look in
obj0’s class, then mixins that class includes (later
includes shadow previous definitions), then obj0’s
superclass, then the superclass’s mixins, etc.

8

The punch-line again

e0.m(e1, …, en)

To implement dynamic dispatch, evaluate the method
body with self mapping to the receiver object (e0)

•  That way, any self calls in the method body use

the receiver’s (e0’s) class
–  Not necessarily the class that defined the method

being executed

•  This is much the same in Ruby, Java, C++, C#, etc.

9

Dynamic dispatch vs closures

•  Dynamic dispatch is more complicated than the rules
for closures
–  Have to treat self specially
–  May seem simpler only because you learned it first
–  Complicated doesn’t imply better or worse

•  Depends on how you use it….
•  Overriding does tend to be overused

10

Example (part 1)

In Racket, closures are closed.
(define (even x) (if (= 0 x) #t (odd (- x 1))))
(define (odd x) (if (= 0 x) #f (even (- x 1))))

If we shadow odd by redeclaring it in a nested scope,
any call to even from the original closure will “do what
we expect” – good thing too…

(letrec ((odd (lambda (x) 17))) (even 42))

 11

Example (part 2)

In Ruby (and other languages) subclasses can change
behavior of methods they don’t override

12

class A
 def even x
 if x==0 then true else odd (x-1) end
 end
 def odd x
 if x==0 then false else even (x-1) end
 end
end
class B < A # improves odd in B objects
 def even x ; x % 2 == 0 end
end
class C < A # breaks odd in C objects
 def even x ; false end
end

Feature or bug? The OOP tradeoff

•  Any method that makes calls to overridable methods
can have its behavior changed in subclasses, even if
it is not overridden
–  Maybe on purpose, maybe by mistake

•  Makes it harder to reason about “the code we’re
looking at”
–  Can avoid by disallowing overriding (Java final)

of methods you call
•  Makes it easier for subclasses to specialize behavior

without copying code
–  Provided method in superclass isn’t modified later

13

Manual dynamic dispatch

Rest of lecture: write racket code using (mostly) pairs
and functions to act like objects with dynamic dispatch(!)

Why????

•  Demonstrates how one language’s semantics is an

idiom in another language
•  Maybe understand dynamic dispatch a bit better by

coding it up
–  Much like a compiler/interpreter would do

14

The plan

Many possibilities. Code in objects.rkt does this:
–  An “object” has a list of field pairs and a list of

method pairs
(struct obj (fields methods))

–  Field-list element example:
(mcons 'x 17)

–  Method-list element example:
(cons 'get-x (lambda (self args)…))

Best to study the code, but a few highlights….

15

Notes

•  Association lists are sufficient for this example but not
efficient for production dynamic dispatch.

•  Not class-based. Each object has its own list of
methods.

•  The key “trick” is that every lambda (method) has an
extra self argument
–  All regular “arguments” are in a list args for

simplicity. Use car, cadr, … to extract individual
arguments

16

Key helper functions

Code to get/set fields and send messages (e.g., call
functions with self bound properly) are plain old Racket
functions:
(get obj field) – return field value
(set obj field val) – set field value
(send obj msg . args)

–  send message msg to obj with parameters args
–  Need to look up appropriate method in obj and

call it with self bound to obj

Look for fields and messages by scan of assoc. list

17

Constructing objects

•  See function make-point for example
–  Plain old Racket function that creates an object
(obj fieldlist methodlist)

–  Pair of association lists:
fieldlist binds initial argument values
methodlist is list of Racket functions

–  Use functions get, set, and send on result and
inside “methods”

–  Call to self: (send self 'm …)

18

“Subclassing”

•  Can use make-point to write make-color-point
or make-polar-point (see code)

•  Build a new object using fields and methods from
“super” “constructor”
–  Add new or overriding methods to the beginning of

the list
–  send will find the first matching method
–  Since send passes the entire receiver for self,

dynamic dispatch works as desired

19

Is this “real”?

OK, Ruby, Java, C++, etc. are not normally
implemented this way. Key differences:
•  Objects have pointers to “class” objects with a single

instance of the method table (vtable)
•  Method lookup either uses a hash (Ruby, where

methods can be added/deleted during execution) or a
static vector (Java/C++/C# where possible methods
are known at compile time)

But it does model the semantics correctly and is worth
studying, if only for that.

20

