CSE 413
Programming Languages &
Implementation

Hal Perkins

Autumn 2012

Late binding and dynamic dispatch
(Based on CSE 341 slides by Dan Grossman)

Today

 Dynamic dispatch, aka late binding, aka virtual method
calls

— Call to self.m2 () in method ml1 defined in class C
can resolve to method m2 defined in a subclass of C

— Most unique characteristic of OOP

« Define semantics of objects and method lookup
carefully

« Look at advantages and disadvantages of dynamic
dispatch

« What if you want dynamic dispatch in a language that
doesn’t have it built-in"?

Resolving identifiers

* The rules for “looking up” symbols in a programming
language is a key part of the language’s definition

— Talk about this in general first, then dynamic dispatch
« Racket: Look up variables in the appropriate environment

— Key point of closure’s lexical scope is defining
“appropriate”

— Also includes let, let”, letrec
* Ruby: local variables and blocks mostly like Racket

— But also have instance variables, class variables, and
methods

— Java is similar, but no explicit closures

Ruby instance variables and methods

« self maps to some “current object”
* Look up variables in environment of method
* Look up instance variables using object bound to self

* Look up class variables using object bound to
self.class

Syntactic distinction between local/instance/class names
(x, @x, QE@x)means no ambiguity or shadowing rules

— Contrast to Java where locals shadow fields with
same name unless we use this. f

Method names are different

« self, locals, instance variables, class variables all map to

objects
« We said “everything is an object” in Ruby but that’s not quite

true
— Method names
— Blocks

— Argument lists
» First-class values are things you can store, pass, return, etc.

— In Ruby, only objects (almost everything) are first-class
— Example: cannotdo e. (if b then ml else m2 end)
 Haveto do if b then e.ml else e.m2 end

— Example: cando (if b then x else y) .ml

Ruby message lookup

Semantics for method calls aka message sends
e0.m(el, .., en)
1. Evaluate e0,el,..,en to objects obj0,0bjl,..,objn
— Usual rules involving self£, variable lookup, etc.
2. Let C =class of obj0 (every object has a class)

3. Ifmis defined in C, pick that method, else recur with the
superclass of C unless C is already Object

— Ifnomis found, call method missing instead
« Default definition raises an error
— Mixins complicate this step — more in a moment
4. Evaluate body of method picked in step 3:
— With parameters bound to arguments objl, .., objn

— With self bound to obj0 - this implements dynamic
dispatch!!

Java message lookup (very similar)

Semantics for method calls aka message sends
e0.m(el, .., en)
1. Evaluate e0,el,..,en to objects obj0,0bjl,..,objn
— Usual rules involving this, variable lookup, etc.
2. Let C =class of obj0 (every object has a class)

3. Complicated rules to pick “the best m” using static types
of e0,el,..,en

— Static checking ensures suitable m (in fact the best m)
will always be found

— Rules similar to Ruby except for this static overloading

— No mixins to worry about (& interfaces irrelevant here)
4. Evaluate body of method picked in step 3:

— With parameters bound to arguments objl, .., objn

— With this bound to obj0 - this implements dynamic
dispatch!!

7

Ruby mixins

Mixins change the lookup rules slightly

« When looking for receiver obj0’s method m, ook in
obj0’s class, then mixins that class includes (later
includes shadow previous definitions), then obj0’s
superclass, then the superclass’s mixins, etc.

The punch-line again

e0.m(el, .., en)

To implement dynamic dispatch, evaluate the method
body with sel£ mapping to the receiver object (e0)

 Thatway, any self calls in the method body use
the receiver's (e0’s) class

— Not necessarily the class that defined the method
being executed

« This is much the same in Ruby, Java, C++, C#, etc.

Dynamic dispatch vs closures

* Dynamic dispatch is more complicated than the rules
for closures

— Have to treat self specially
— May seem simpler only because you learned it first
— Complicated doesn’t imply better or worse

» Depends on how you use it....

 Overriding does tend to be overused

10

Example (part 1)

In Racket, closures are closed.
(define (even x) (if (= 0 x) #t (odd (- x 1))))
(define (odd x) (if (= 0 x) #f (even (- x 1))))

If we shadow odd by redeclaring it in a nested scope,
any call to even from the original closure will “do what

we expect” — good thing too...

(letrec ((odd (lambda (x) 17))) (even 42))

11

Example (part 2)

In Ruby (and other languages) subclasses can change
behavior of methods they don’t override
class A

def even x
if x==0 then true else odd (x-1) end

end
def odd x
if x==0 then false else even (x-1) end
end
end
class B < A # improves odd in B objects
def even x ; x $ 2 == 0 end
end

class C < A # breaks odd in C objects
def even x ; false end
end

Feature or bug? The OOP tradeoff

* Any method that makes calls to overridable methods
can have its behavior changed in subclasses, even if
it is not overridden

— Maybe on purpose, maybe by mistake

« Makes it harder to reason about “the code we’re
looking at”

— Can avoid by disallowing overriding (Java £inal)
of methods you call

 Makes it easier for subclasses to specialize behavior
without copying code

— Provided method in superclass isn't modified later

13

Manual dynamic dispatch

Rest of lecture: write racket code using (mostly) pairs
and functions to act like objects with dynamic dispatch(!)

Why?27?7?

 Demonstrates how one language’s semantics is an
idiom in another language

 Maybe understand dynamic dispatch a bit better by
coding it up
— Much like a compiler/interpreter would do

14

The plan

Many possibilities. Code in objects.rkt does this:

— An “object” has a list of field pairs and a list of
method pairs

(struct obj (fields methods))
— Field-list element example:
(mcons 'x 17)
— Method-list element example:
(cons 'get-x (lambda (self args)..))

Best to study the code, but a few highlights....

15

Notes

» Association lists are sufficient for this example but not
efficient for production dynamic dispatch.

* Not class-based. Each object has its own list of
methods.

* The key “trick” is that every lambda (method) has an
extra self argument

— All regular “arguments” are in a list args for
simplicity. Use car, cadr, ... to extract individual
arguments

16

Key helper functions

Code to get/set fields and send messages (e.g., call
functions with self bound properly) are plain old Racket

functions:
(get obj field) - return field value
(set obj field wval) — set field value
(send obj msg . args)
— send message msg to obj with parameters args

— Need to look up appropriate method in obj and
call it with self bound to obj

Look for fields and messages by scan of assoc. list

17

Constructing objects

* See function make-point for example

— Plain old Racket function that creates an object
(obj fieldlist methodlist)

— Pair of association lists:
fieldlist binds initial argument values
methodlist is list of Racket functions

— Use functions get, set, and send on result and
inside “methods”

— Call to self: (send self 'm ..)

18

“Subclassing’

 Can use make-point to write make-color-point
or make-polar-point (see code)

« Build a new object using fields and methods from
“super” “constructor”

— Add new or overriding methods to the beginning of
the list

— send will find the first matching method

— Since send passes the entire receiver for sel€£,
dynamic dispatch works as desired

19

Is this “real”?

OK, Ruby, Java, C++, etc. are not normally
implemented this way. Key differences:

* QObjects have pointers to “class” objects with a single
instance of the method table (vtable)

« Method lookup either uses a hash (Ruby, where
methods can be added/deleted during execution) or a
static vector (Java/C++/C# where possible methods
are known at compile time)

But it does model the semantics correctly and is worth
studying, if only for that.

20

